2.3 Solve Inequalities

Directions: Multiply the polynomials.		
9) $2x(4x-8)$	10) $(2x-1)(4x-8)$	11) $(2x-1)(4x^2-8x+3)$

WRAP UP

Directions: Solve each inequality. Express the solution graphically and in set notation.		
1) $-17.92 > -0.7n - 2.5n$	$2) - (3 + 3g) \le 5g + 5$	
<++++++++++++++++++++++++++++++++++++	$\overset{\leftarrow}{}$	

3) Brust takes his cut (one-fourth) of the Algebros profit from selling fidget spinners to the store and bought 10 donuts for \$12. He came home with more than \$3.00.

a) Write an inequality that represents the situation and use it to find out how much money the Algebros had made from selling fidget spinners. Make sure you define your variables.

b) How would the solution set change if the number of Algebros went from four to six? Construct a viable argument to support your reasoning.

4) Make an inequality that will have the given solution set and conditions.

a) { $x real | x \ge 3$ } with at least one operation. b) { $x real | x \ge 3$ } with at least one distribution.

c) { $x real | x \ge 3$ } with variables on both sides d) { }

EXIT TICKET -

1) Find the solution set. Express the solution in set notation and graphically.

-15 + 7m > 6m + 7(6 - 8m)

2) We're doing the following problem in class, $-10x \ge 40$ and Sully says that the shortcut to get $x \le -4$ is to always flip the inequality symbol when dividing by a negative. Explain or demonstrate why the shortcut works.