

1) Write the first five terms of the sequence.
$1,3,9,27,81$
2) Describe how you go from one term of the sequence to
the next.
I multiplied each term by three to get to the
next term in the sequence.

USE THE FOLLOWING SEQUENCE FOR \#6-10: Kelly's sequence: 26, 22, 18, 14,

6) Describe how you go from one term of the sequence to the next. I subtracted four from the previous term to get the next term in the sequence.	7) Find K(12). -18 8) Find K_{15} -36	9) Graph the terms of the sequence as an ordered pair ($n, K(n)$) on the graph ABOVE. Sce	10) Describe how the graph changes from one term to the next. The rate of change goes down by four units each time. Its constant and forms a straight line on the graph.

USE THE FOLLOWING SEQUENCE FOR \#11-15: Brust's sequence: 20, 50, 80, 110

11) Describe how you go from one term of the sequence to the next. I added 30 from the previous term to get to the next term in the sequence.	12) Find B(11). 320 13) Find B15 440	14) Graph the terms of the sequence as an ordered pair ($n, B(n)$) on the graph ON THE NEXT PAGE. Marked with x 's on the next	15) Describe how the graph changes from one term to the next. The rate of change on the graph remains the same from each point to the next, going up 30 units each time.
		page grap	

