7.3 Linear vs. Exponential

10. A population <i>p</i> of 10,000 people doubles every 21 years <i>t</i> . How many people will there be in 60 years?	 11. After a morning coffee, Mr. Sullivan has 130 mg of caffeine <i>c</i> in his blood. The half-life is 2 hours <i>h</i>. How much caffeine is in his system after 7 hours?
12. A culture of bacteria has 700 cells <i>c</i> that doubles every 8 hours <i>h</i> . How many cells of bacteria will there be in 24 hours?	13. There are 100 grams of radioactive material <i>m</i> . The half-life of the material is 2,000 years <i>t</i> . How much radioactive material will there be in 15,000 years?

Answers to 7.3 CA #1

1. Exponential Decay $p(t) = 100,000($	Exponential Decay 2. Linear Decay $v(t) = 100,000(0.98)^t$ $v(t) = 900 - 70t$		3. Exponential Growth $b(h) = 10(2.5)^h$		4. Linear Growth $f(x) = 1 + \frac{1}{3}x$			
5. Exponential Growth $f(x) = 2(1.5)^{x}$ 6. Exponential Decay $f(x) = 12\left(\frac{1}{4}\right)^{x}$		Decay $2\left(\frac{1}{4}\right)^x$	7. Exponential Decay $v(t) = 9(0.9)^t$		8. Exponential Growth $h(t) = 12(2.5)^t$			
9. Linear Decay w(x) = 12 - 1.8x	10. $p(t) = 10,000(2)^{\frac{t}{21}}$ p(60) = 72458 people		11. c(h) = 11 $c(7) = 11.4^{\circ}$	$30\left(\frac{1}{2}\right)^{\frac{h}{2}}$ 9 mg	12. $c(h) = 700(2)^{\frac{h}{8}}$ p(24) = 5600 cells	13. $m(t) = 100 \left(\frac{1}{2}\right)^{\frac{t}{2,000}}$ $m(15,000) = 0.55 \text{ grams}$		