Identify the type of relationship and create a function from the given information.

1. A population p of 100,000 decreases by 2% each year t.
2. A $\$ 900$ sound system decreases in value v by $\$ 70$ each year t.
3. A bacterial culture has 10 bacteria b that are increasing by 150% each hour h.
4. Use x and $f(x)$ for your variables.

5. Use x and $f(x)$ for your variables.

6. Use x and $f(x)$ for your variables.

7.					8.				
t	0	1	2	3	t	0	1	2	3
$v(t)$	9	8.1	7.29	6.561	$h(t)$	12	30	75	187.5

9.

\boldsymbol{x}	0	1	2	3
$\boldsymbol{w}(\boldsymbol{x})$	12	10.2	8.4	6.6

10. A population p of 10,000 people doubles every 21 years t. How many people will there be in 60 years?
11. After a morning coffee, Mr. Sullivan has 130 mg of caffeine c in his blood. The half-life is 2 hours h. How much caffeine is in his system after 7 hours?
12. A culture of bacteria has 700 cells c that doubles every 8 hours h. How many cells of bacteria will there be in 24 hours?
13. There are 100 grams of radioactive material m. The half-life of the material is 2,000 years t. How much radioactive material will there be in 15,000 years?

Answers to 7.3 CA \#1

1. Exponential Decay$p(t)=100,000(0.98)^{t}$		2. Linear Decay$v(t)=900-70 t$		3. Exponential Growth$b(h)=10(2.5)^{h}$		4. Linear Growth $f(x)=1+\frac{1}{3} x$
5. Exponential Growth$f(x)=2(1.5)^{x}$		6. Exponential Decay$f(x)=12\left(\frac{1}{4}\right)^{x}$		7. Exponential Decay$v(t)=9(0.9)^{t}$		8. Exponential Growth $h(t)=12(2.5)^{t}$
9. Linear Decay $w(x)=12-1.8 x$	10.$\begin{gathered} p(t)=10,000(2)^{\frac{t}{21}} \\ p(60)=72458 \text { people } \end{gathered}$		11. $\begin{array}{r} c(h) \\ c(7)= \end{array}$	$0\left(\frac{1}{2}\right)^{\frac{h}{2}}$ mg	12. $\begin{gathered} c(h)=700(2)^{\frac{h}{8}} \\ p(24)=5600 \text { cells } \end{gathered}$	13. $\begin{gathered} m(t)=100\left(\frac{1}{2}\right)^{\frac{t}{2,000}} \\ m(15,000)=0.55 \text { grams } \end{gathered}$

