Name: Identify the type of relationship and create a function from the given information.

- 1. The math club has \$300 in their account a, and raise \$40 every week w.
- 2. A \$900 sound system decreases in value v by 9% each year t.
- 3. There are 52 mosquitos *m* by the pool. Every hour *h* they increase by 20%.

4. Use x and f(x) for your variables.

5. Use x and f(x) for your variables.

6. Use x and f(x) for your variables.

7.

t	t 0		2	3
b(t)	5	10.5	22.05	46.305

8.

n	0	1	2	3	
s(n)	s(n) 21		30	34.5	

<i>7</i> .									
x	0	1	2	3					
h(x)	60	15	3.75	0.9375					

Create a model (equation) for each scenario. Use function notation to answer the question.

- 10. Pesticide is killing off the local mosquito population *p* such that the half-life of the population is 7 hours *h*. If there are 50,000 mosquitos, how may will there be left in 2 days?
- 11. A stock portfolio has a value *v* of \$651,000 and doubles every 15 years *t*. How much will the portfolio be worth in 22 years?

- 12. A population *p* of 28,000 people doubles every 21 years *t*. How many people will there be in 60 years?
- 13. There is 820 grams of radioactive material *r*. The half-life of the material is 450 years *t*. How much radioactive material will there be in 3,000 years?

Answers to 7.3 CA #2

1. Linear Growth $a(w) = 300 + 40w$	300 + 40w v(t) = 9000 ay 6. Exponential Growth		•	3. Exponential Growth $b(h) = 52(1.2)^h$		4. Exponential Decay $f(x) = 8\left(\frac{3}{4}\right)^x$	
5. Linear Decay $f(x) = 5 - \frac{2}{3}x$			7. Exponential Growth $b(t) = 5(2.1)^t$		8. Linear Growth $s(n) = 21 + 4.5x$		9. Exponential Decay $h(x) = 60(0.25)^x$
10. $p(h) = 50,000(2)^{\frac{1}{2}}$ $p(48) = 431 \text{ mosquitos}$		11. $v(t) = 651,0$ $v(22) = $1,79$		p(t) = 202 $p(60) = 202$	$\frac{t}{28,000(2)^{\frac{t}{21}}}$ 2,882 people		$r(t) = 820 \left(\frac{1}{2}\right)^{\frac{t}{450}}$ $000) = 8.07 \text{ grams}$